Hyperelastic modeling of location-dependent human distal femoral cartilage mechanics
نویسندگان
چکیده
Knee articular cartilage exhibits complex mechanical behavior, even under high strain rates, which poses a challenge to developing accurate and efficient cartilage models. In particular, the tissue's stress–strain response is non-linear and the stiffness of the response is location-dependent. Hyperelastic models such as those of Alan Gent and others have increasingly found use in soft tissue biomechanics. Recently, a hyperelastic statistical chain network model representing the transverse isotropy of the collagen matrix in the superficial tangential zone has been developed. The model successfully simulated the 100% strain/ s unconfined compression response of human proximal tibial cartilage. Moreover, spatial variations in the tangent modulus to the nominal stress–strain curve taken at 10% strain were reflected in the variability of a single parameter of the model. Given the success of the model, we desired to determine whether these outcomes are equally applicable to healthy human distal femoral cartilage so that a complete model of tibiofemoral joint cartilage can be developed. The transversely isotropic model was employed along with two other hyperelastic chain network models to determine which model best simulated unconfined compression data for healthy distal femoral cartilage. The transversely isotropic model fit the data excellently (R1⁄40.999). The model was subsequently simplified to depend on a single parameter and reapplied to the dataset. The modified model maintained an excellent fit to the data (R1⁄40.999), and its single parameter varied in a statistically similar regional pattern (po0.05) to the experimentally-obtained elastic modulus of the tissue. Outcomes suggest that this model is suitable for modeling the spatially-varying, non-linear mechanics of healthy human distal femoral cartilage. Implementation of this constitutive relation within computational models of the knee will provide novel insight into the relationship between joint mechanics, cartilage loading, and knee osteoarthritis
منابع مشابه
Evaluation of hyperelastic models for the non-linear and non-uniform high strain-rate mechanics of tibial cartilage.
Accurate modeling of the high strain-rate response of healthy human knee cartilage is critical to investigating the mechanism(s) of knee osteoarthritis and other cartilage disorders. Osteoarthritis has been suggested to originate from regional shifts in joint loading during walking and other high strain-rate physical activities. Tibial plateau cartilage under compression rates analogous to walk...
متن کاملPartial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملModification of exponential based hyperelastic strain energy to consider free stress initial configuration and Constitutive modeling
In this research, the exponential stretched based hyperelastic strain energy was modified to provide the unstressed initial configuration. To this end, as the first step, the model was calibrated by the experimental data to find the best material parameters. The fitting results indicated material stability in large deformations and basic loading modes. In the second step, the initial pseudo str...
متن کاملSpecimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies.
Hip osteoarthritis may be initiated and advanced by abnormal cartilage contact mechanics, and finite element (FE) modeling provides an approach with the potential to allow the study of this process. Previous FE models of the human hip have been limited by single specimen validation and the use of quasi-linear or linear elastic constitutive models of articular cartilage. The effects of the latte...
متن کاملBiomechanical evaluation of human and porcine auricular cartilage.
OBJECTIVES/HYPOTHESIS The mechanical properties of normal auricular cartilage provide a benchmark against which to characterize changes in auricular structure/function due to genetic defects creating phenotypic abnormalities in collagen subtypes. Such properties also provide inputs/targets for auricular reconstruction scaffold design. Several studies report the biomechanical properties for sept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014